Machine Learning Resources - Lectures (ML 기본강좌)
[머신러닝 입문 강좌]
Andrew Ng's ML class
https://class.coursera.org/ml-003/lecture
ML class wiki : https://share.coursera.org/wiki/index.php/ML:Main
ML1 class wiki : https://share.coursera.org/wiki/index.php/ML1:Main
note : http://www.holehouse.org/mlclass/
[모두를 위한 머신러닝(한글)]
김성훈 교수님 class
http://hunkim.github.io/ml/
[머신러닝 입문 온라인북]
Bengio textbook
http://www.deeplearningbook.org/
https://www.youtube.com/watch?v=JuimBuvEWBg
[텐서플로우]
Tensorflow
https://github.com/aymericdamien/TensorFlow-Examples
https://wookayin.github.io/TensorFlowKR-2017-talk-bestpractice/ko/#1
[이미지 처리를 위한 딥러닝 강좌]
CS231n: Convolutional Neural Networks for Visual Recognition
http://cs231n.stanford.edu/syllabus.html
https://www.youtube.com/playlist?list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
https://github.com/aikorea/cs231n
[언어 학습을 위한 딥러닝 강좌]
CS224d: Deep Learning for NLP 2016
http://cs224d.stanford.edu/reports_2016.html
http://cs224d.stanford.edu/syllabus
https://www.youtube.com/playlist?list=PLCJlDcMjVoEdtem5GaohTC1o9HTTFtK7_
[강화 학습을 위한 딥러닝 강좌]
Reinforcement Learning
http://incompleteideas.net/sutton/book/the-book.html
https://www.youtube.com/watch?v=HYTWg9QYrW8&index=2&list=PLlMkM4tgfjnLHjEoaRKLdbpSIDJhiLtZE
CS 294 : Deep Reinforcement Learning
[수학, 통계]
mathematical monk
https://www.youtube.com/user/mathematicalmonk
Essence of linear algebra
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
MIT Statistical Learning Theory
https://www.notion.so/Statistical-Learning-Theory-50ce9b93eae742f1a54fff2066e67ef8